TECHNICAL RESEARCH REPORT

Split Recursive Least Squares: Algorithms,

Architectures, and Applications
by A-Y. Wuand K.J.R. Liu

T.R. 94-37

INSTITUTE FOR SYSTEMS RESEARCH|

Sponsored by

the National Science Foundation
Engineering Research Center Program,
the University of Maryland,

Harvard University,

and Industry

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1994 2 REPORTTYPE 00-00-1994 to 00-00-1994
4. TITLEAND SUBTITLE 5a. CONTRACT NUMBER
Split _Reqursve Least Squares. Algorithms, Architectures, and £b. GRANT NUMBER
Applications

5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Department of Electrical Engineering,lnstitute for Systems REPORT NUMBER

Resear ch,University of Maryland,College Park,MD,20742

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 33
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Split Recursive Least Squares: Algorithms, Architectures, and
Applications

An-Yeu Wu and K. J. Ray Liu

Electrical Engineering Department and Institute for Systems Research
University of Maryland
College Park, MD 20742
Phone: (301) 405-6619, Fax: (301) 405-6707

ABSTRACT

In this paper, a new computationally efficient algorithm for recursive least-squares (RLS) fil-
tering is presented. The proposed Split RLS algorithm can perform the approximated RLS with
O(N) complexity for signals having no special data structure to be exploited, while avoiding the
high computational complexity (O(N?)) required in the conventional RLS algorithms. Our per-
formance analysis shows that the estimation bias will be small when the input data are less cor-
related. We also show that for highly correlated data, the orthogonal preprocessing scheme can
be used to improve the performance of the Split RLS. Furthermore, the systolic implementation
of our algorithm based on the QR-decomposition RLS (QRD-RLS) array as well as its application
to multidimensional adaptive filtering is also discussed. The hardware complexity for the resulting
array is only O(N) and the system latency can be reduced to O(log, N). The simulation results
show that the Split RLS outperforms the conventional RLS in the application of image restoration.
A major advantage of the Split RLS is its superior tracking capability over the conventional RLS

under non-stationary environments.

The work is supported in part by the ONR grant N00014-93-10566 and the NSF grant
MIP93-09506.

1 Introduction

The family of recursive least-squares (RLS) adaptive algorithms are well known for their superiority
to the LMS-type algorithms in both convergence rate and misadjustment [1][2]. In general, the RLS
algorithms do not impose any restrictions on the input data structure. As a consequence of this
generality, the computational complexity is O(N?) per time iteration, where N is the size of the
data matrix. This becomes the major drawback for their applications as well as for their cost-
effective implementation. To alleviate the computational burden of the RLS, the family of fast
RLS algorithms such as fast transversal filters, RLS lattice filters, and QR-decomposition based
lattice filters (QRD-LSL), have been proposed [2]. By exploiting the special structure of the input
data matrix, they can perform RLS estimation with O(N) complexity. One major disadvantage
of the fast RLS algorithms is that they work for data with shifting input only (e.g., Toeplitz or
Hankel data matrix). In many applications like multichannel adaptive array processing and image
processing, the fast RLS algorithms cannot be applied because no special matrix structure can be
exploited. In this paper, we propose an approzimated RLS algorithm, which is called the Split RLS
, based on the projection method. Through multiple decomposition of the signal space and making
suitable approximations, we can perform RLS for non-structured data with O(NV) complexity. Thus,
both the complexity problem in the conventional RLS and the data constraint in the fast RLS can
be resolved.

The projection method has been used to solve large and sparse consistent linear equations such as
partial differential equations (PDE). Given a linear equation Ax = b, where A € R™*" b € R™*!,
there are two kinds of projection methods to solve it: For the consistent systems (m = n), the linear
equation is decomposed into several smaller linear equations by “row-partitioning”. Then x can be
solved by iteration methods such as Kaczmarz projection method and Cimmino projection method
[3][4][5]). For the inconsistent systems (m > n), A is decomposed into smaller submatrices by
“column-partitioning”. Then x and the residual can be solved by gradient-based iteration method
[6]. Because the whole data matrix is used to compute the gradient, it is non-adaptive in nature
and the convergence rate depends on the property of the A matrix.

In this paper, we will use the concept of column-partitioning to solve the non-structured RLS
so that the computational complexity can be reduced. The signal space A is first partitioned into
two equal-dimensional signal subspaces. After performing RLS on each subspace, we try to find
an approximated optimal projection vector (of the the whole signal space) from the two optimal
projection vectors of each signal subspace. Through the steps of decomposition and approximation,
the complexity of the RLS can be reduced by nearly half. If now we repeatedly apply the same
decomposition and approximation to each signal subspace, the RLS estimation can be solved with

O(N) complexity by this “divide-and-conquer” approach. We shall call such RLS estimation the

Split RLS. The systolic implementation of the Split RLS based on the QR-decomposition RLS
(QRD-RLS) systolic array in 7] is also proposed. The hardware complexity for the resulting RLS
array can be reduced to O(N) and the system latency is only O(log, V).

It is noteworthy that since approximation is made while performing the Split RLS, our ap-
proach is not to obtain exact least-squares (LS) solutions. The approximation errors will introduce
misadjustment (bias) to the LS errors. In order to know under what circumstances the algorithm
will produce small and acceptable bias, we also provide some basic analyses for the performance
of the Split RLS. The analyses together with the simulation results indicate that the Split RLS
works well when applied to broad-band/less-correlated signals. Based on this observation, we also
propose the orthogonal preprocessing scheme to improve the performance of the Split RLS. By
using the transformed signals, which are less correlated than the original ones, as the inputs of the
Split RLS, we can lower the bias even if the inputs are narrow-band/highly-correlated signals.

In the last part of this paper, we apply the Split RLS to the multidimensional adaptive filtering
(MDAF) based on the architecture in [8]. By incorporating the well-known McClellan Transfor-
mation (MT) with the Split RLS systolic array, we can perform two-dimensional (2-D) adaptive
filtering with only O(N) hardware complexity and with unit throughput rate. Due to the fast con-
vergence rate of the Split RLS, the Split RLS performs even better than the full-size QRD-RLS in
the application of real-time image restoration. This also indicates that the Split RLS is preferable
under non-stationary environment.

The rest of this paper is organized as follows. The projection method and the Split RLS
algorithm are derived in Section 2. The systolic implementation of the proposed algorithm based on
the QRD-RLS array is then described in Section 3. The performance analysis and simulation results
are discussed in Section 4. An improved Split RLS algorithm using the orthogonal preprocessing
scheme is considered in Section 5. Finally, the application of the Split RLS in 2-D adaptive filtering

is presented in Section 6.

2 The Projection Method

Given an observation data matrix A = [aj,az, - +,a,] € R™*™ without any exhibited structure

and the desired signal vector y € R™*1, the LS problem is to find the optimal weight coefficients
v?’:[’wl’u)23""u)TL]T (1)

which minimize the LS errors
lefl? = |Aw — y||*. (2)

In general, W is of the form [9]:
W= (ATA)1ATy. (3)

We also have

y=Aw=Py, e=y-J (4)

where y is the optimal projection of y on the column space of A, P = A(ATA) AT is the
projection matrix, and € is the optimal residual vector. The principle of orthogonality ensures that
é is orthogonal to the column space of A. For RLS algorithms that calculate exact LS solution, such
a direct projection to the N-dimensional space takes O(N?) complexity. Knowing this, in order to

reduce the complexity, we shall try to perform projection onto spaces of smaller dimension.

To motivate the idea, let us consider the LS problem with the partition A = [Aq, A;], where
A1, Ay € R™X(m/2) Now instead of projecting y directly onto the space spanned by A (denoted
as span{A}), we project y onto the two smaller subspaces, span{A;} and span{A,}. and obtain
the optimal projections ¥; and ¥, on each subspace (see Fig.1). The next step is to find a “good”
estimation of the optimal projection ¥, say §¥eppros. If we can estimate a 1-D or 2-D subspace from
¥1 and ¥, and project the desired signal y directly on it to obtain J,ppr:, the projection spaces
become smaller and the computational complexity is reduced as well. There are two basic criteria
for a good estimation of §. First, it should be in the column space of A matrix, t.e., it must be
a linear combination of the column vectors. Second, it should be as close to the real projection ¥
as possible so that the estimation error can be reduced. What worth mentioning is that since the
problem itself is adaptive processing in nature, as long as ¥ .ppro. Will be eventually close to §, the
initial distance between § and ¥ .pproo is not an issue. In the following, we propose two estimation

methods based on their geometric relationship in the Hilbert space.

2.1 Estimation Method I (Split RLS I)

The first approach is simply to add the two subspace projections ¥; and ¥, together, u.e.,
yapproz = S’l + 5'2- (5)

This provides the most intuitive and simplest way to estimate §,p,70.. We will show later that as

¥1 and ¥, are more orthogonal to each other, ¥4y, Will approach to the optimal projection vector

-~

y.

Let Fig.2(a) represent one of the existing RLS algorithms that project y onto the N-dimensional
space of A and compute the optimal projection & (or y, depending on the requirements) for the
current iteration. The complexity is O(N?) per time iteration for the data matrix of size N. Now

using Fig.2(a) as a basic building block, we can construct the block diagram for estimation method

I as shown in Fig.2(b). Because the whole projection space is first split into two equal but smaller
subspaces to perform the RLS estimation, we shall call this approach the Split-RLS (SP-RLS). It
can be easily shown that the complexity is reduced by nearly half through such a decomposition.
The RLS algorithm based on estimation method I (SP-RLS I) can be stated as follows, where
RLS(A,y, N) denotes the RLS algorithm in Fig.2(a) and returns §(n) (or é(n)), the last element

of y (or &), for the current iteration.

Algorithm 1 (SP-RLS I) Given the input data vector a(n) = [ai(n), az(n) ,---,an(n)]T and
the desired signal y(n) at time n, the SP-RLS I computes the current approzimated optimal residual

€approx(n) as follows:

SP-RLS 1

1. Update the data matriz and the desired data vector by

A(Z(_ Y } y(n) = { y(n-1) } .

A =
W=t y(n)

2. Decompose A(n) into two equal-dimensional data matrices as A(n) = [Aj(n), Ay(n)]. Then

compute the current optimal projection of each subspace by

g1(n) = RLS(A1(n),y(n),N/2),
Ya(n) = RLS(As(n),y(n), N/2).

3. Update the estimated optimal projection vector:

yapprox(TL) =

yapprox(n - 1) .
J1(n) + G2(n)

4. Project the desired signal y(n) onto the 1-D vector Yapprox(n) to obtain éapprox(n):
€approx(n) = RLS(Japprox(n), y(n),1).

2.2 Estimation Method II (Split RLS II)

In estimation method I, we try to project y onto the estimated optimal projection vector ¥4pproz-
. . ~ A ~ -

In this approach, we will project y directly onto the 2-D subspace A = span{y,,y.}. As a result,

the estimation shall be more accurate with slightly increase in complexity.

As with estimation method I, we can construct the block diagram for estimation method II (see

Fig.2(c)) which is similar to Fig.2(b) except for the post-processing part. The projection residual
on span{y1,¥2} is computed through a 2-input RLS block with ¥, and y2 as the inputs. The RLS
algorithm based on estimation method II (SP-RLS II) is as follows:

Algorithm 2 (SP-RLS II) Algorithm SP-RLS II is similar to the SP-RLS I except that step 3

and 4 are modified as:

3. Construct the n-by-2 matriz A(n) by

A(n) =

A(n-1)
gl(n)’ 172("')

where A(0) = O.

4. Project the desired signal y(n) onto A(n) to obtain €approx(n):

éapprox() = RLS(A(n),y(n),?2).

2.3 Tree-Split RLS based on Estimation Method I and II

In estimation method I and II, we try to reduce the complexity by making one approximation at the
last stage. Now consider the block diagram in Fig.2(c). If we repeatedly expand the two building
blocks on the top by applying the same decomposition and approximation, we will obtain the block
diagram in Fig.2(d). We shall call this new algorithm the Tree-Split RLS algorithm (TSP-RLS) due
to its resemblance to a binary tree. The TSP-RLS algorithm based on Fig.2(d) is shown below.

Algorithm 3 (TSP-RLS II) Given the input data vector a(n) = [a;(n), az(n) ,---,an(n))T and
the desired signal y(n) at time n, the TSP-RLS II computes the current approzimated optimal resid-

ual é,pprox(n) as follows:

TSP-RLS II
Initialization: A(;y(0) = O, for 1 = 0,1,...,log, N, where A()y denotes the data matriz at the Ith
stage in the TSP-RLS.

1. Setl =0, ai)(n) = a(n), and update y(n) as

y(n)

y(n) = ly(n_l)]-

2. Update A(y(n) as

Agy(n) =

Agln-1) } |
ay(n)

3. If N > 2, compute the approzimated RLS for the current stage:

(a) Decompose A(n) into

Agy(n) = [Aq)(n), Ag y(n)s - - s ANy,)(n)]

where A; (y(n) is a n-by-2 data matriz.

(b) Compute §,(n) via
ﬂl(n) = RLS(AZ,(I)(n)7 y(n)vQ)a f07' 1=1,2,.. -7]\7/2'

(c) Form the output vector of the current stage as y(y(n) = [71(n), §2(n), . ..,@N/z(n)]T.
(d) Set the input vector to the next stage as a(yq)(n) = yuy(n).
(e) Setl =141, N = N/2. Repeat step 2-4.

4. Otherwise (reach the final stage), apply the RLS to compute é,pprox(n):
éapprox(n) = RLS(A([)(H), y(n), 2),
and exit.

Likewise, we can derive the TSP-RLS algorithm from estimation method I (TSP-RLS I) by using
the block diagram in Fig.2(b).

Lemma 1 The computational complezity of the TSP-RLS algorithm is O(N).

Proof: For TSP-RLS II only. Let the computational complexity per time iteration for a N-input
RLS be Cn. Also let Cy = k for a 2-input RLS, where £ is a constant. From the block diagram
in Fig.2(c), we know that the evaluation of the N-input RLS is decomposed into the evaluation of
two N/2-input RLS’s plus one 2-input RLS. Hence,

Cn = 2Cnja + k. (6)

Since the TSP-RLS II is obtained by recursively expanding the block diagram of the SP-RLS II,
the Cn of TSP-RLS 1II can be computed by recursively expanding Cy in (6):
-1

Cn=202CNpu+ k) +k=...=2Cqm+kd 2" = (2 - 1)k, (7)

n=0

where [can be computed by setting C/pt = Co, i.e., | =logy, N — 1. Thus,
Cnv=(N-1)k (8)

which is on the order of N. O

3 Systolic Implementation

In this section, we will present the systolic implementation of the above algorithms. First of all,
we should note that each RLS building block in Fig.2 is independent of choices of RLS algorithms.
Because the QRD-RLS array in [7] can compute the RLS estimation in a fully-pipelined way, it is
a good candidate for our purpose. However, the original array computes only the optimal residual.
In order to obtain the two optimal subspace projections ¥; and y,, a delayed version of y(n) (the
desired signal at time n) should be kept in the rightmost column of the QRD-RLS array. Once the
residual is computed, we can use

i(n) = y(n) - &x(n), o)
= y(n) — é2(n)

1
ya(n) =
to obtain the two subspace projections. Also, the delayed y(n) can be sent to the next stage as
input so that no global communication is required. Fig.3 shows the modified QRD-RLS systolic
array and the detailed operations of its processing elements (PE’s). In the following discussions,
we shall call the modified QRD-RLS array the projection array, and the QRD-RLS array in [7] the
residual array, respectively.

Now based on the block diagram in Fig.2, we can implement the Split RLS algorithms in the
following way: For those RLS blocks which need to compute the optimal projection, the projection
array is used for their implementations, while for those RLS blocks which need to compute the
optimal residual (usually in the last stage), the residual array is used. The resulting systolic
implementations of the SP-RLS LII and the TSP-RLS II are demonstrated in Fig.4(a),(b) and (c).

Lemma 2 The two TSP-RLS systolic arrays (TSP-RLS LII) consist of O(N) angle computers
and rotators, and the total system delay is O(log, N).

Proof: Suppose a N-input TSP-RLS II array requires Ay angle computers and Ry rotators. From

(6)-(8), we have
AN = 24N +2= (271 - 1)2=2(N - 1),

10
Ry =2Ryjy +3= (2% —1)3 = 3(N - 1). a0

On the other hand, let the total system delay for a N-input SP-RLS II array be Tn. From Fig.4(b),

we have

In =Tnj+3. (11)

Then Ty for the TSP-RLS II can be obtained by expanding T in (11):
In=Tn2+3)+3=...=3-(I+1). (12)

Recall from Lemma 1 that ! = logy, N — 1. Thus, Ty = 3 -log, N. Similarly, it can be shown that
Ay =Ry =2N —-1and Tn = 2-(log, N 4+ 1) for the TSP-RLS I array. O

A comparison of hardware cost for the full-size QRD-RLS in [7] (denoted as FULL-RLS), SP-
RLS, TSP-RLS, and QRD-LSL (2, chap.18], is listed in Table 1. As we can see, the complexity of
the TSP-RLS is comparable with the QRD-LSL which requires shift data structure.

4 Performance Analysis and Simulation Results

It is noteworthy that our approach is not an exact LS solution since the constructed ¥,ppror is
just an approximation of the optimal projection vector. This approximation error will introduce
misadjustment (bias) to the LS estimation. In the sequel, we will try to analyze the bias for SP-
RLS I and SP-RLS II by investigating the relationship between the optimal projection of the whole
space, ¥, and the optimal projections of the two equal-dimensional subspaces, ¥, and y;. Due to
the multiple RLS approximations in the TSP-RLS algorithm, it is almost impossible to provide
an exact close-form solution to the final output of the TSP-RLS. Nevertheless, the analysis of the
SP-RLS algorithms can give us an idea that under what conditions will the algorithms produce

small and acceptable misadjustment.

4.1 Estimation Error for SP-RLS 1

Consider the LS problem in (2) and decompose the column space of A into two equal-dimensional
subspaces, i.e., A = [A; ,Ag). Let wI = [W] , W], then the optimal projection vector ¥ can be
represented as

y=Aw=y1+9; (13)

where y; = A;w; and 2 = Ay;w,. From the normal equations

ATAW = ATy, (14)

we have
AT AW + AT Agw, = ATy, (15)
ATA W, + AT AW, = ATy, (16)

Let W;,y,, i = 1,2, be the optimal weight vectors and the optimal projection vectors when
considering two subspaces span{A;} and span{A,} separately. From (13) and (14), they are given
by

wi=(ATA) ATy, §i=AW, i=1,2 (17)

Premultiplying A;(ATA;)~! on (15) and using (17), we have

Awy + A (ATA) TTAT AW, = AW, (18)
Similarly, from (16) and (17) we can obtain

Ax(ATA)TTAT AW + AgWy = AgWs. (19)
By the definitions of y1,¥2,¥1,¥2, (18) and (19) can be written as

1+ Piy2 =y, (20)
Pyyi1+32=y2 (21)

where P;, 1 = 1,2 are the projection operators defined in Section 2.

In SP-RLS I, we estimate the optimal projection by
S’app'roz = 5’1 + 5'27 (22)

and the estimation error (bias) is given by

||Ae1||2 = ||€appror — é]|2 =y - S’approx”2- (23)
Substituting (20)-(22) into (23) yields
|Ae1]|? = ||y — 1 — 7211 = [[P192 + Payi%. (24)

In order to lower the bias value, P1y, and P,y; should be as small as possible. Note that

Plyg = A](A:{Al)-IA:lTAQWQ = A]@l_lli’lg\;Vz, (25)
Poy1 = Ay(ATA)TTATA W, = A28 @y Wy (26)

where ®;; = AT A, is the deterministic correlation matrix. When the column vectors of Ay and
A, are more orthogonal to each other, ®;, and ®,; will approach to zero and the bias is reduced

accordingly.

4.2 Estimation Error for SP-RLS II

Consider the block diagram of the SP-RLS II in Fig.2(c). The optimal projection of y onto the

space span{y1,y2} can be written as
Veppror = k191 + k2¥2 (27)
where k = [151, 1}2]T is the optimal weight vector. From the normal equations, we have
31,5207 (31, 92 k = [31. 720y (28)

Using the facts that
yi=y-—e, Yy2=Y-eé

=T -2 of < 12 (29)
iy =yl y2y =yl
we can simplify (28) as follows:
i o1 yier\ _
{ ky + k2(.1T- W) =1 (30)
Lo(1 _ Y2¢€1 b —
ki(1 W)-f-kz = 1.
Then the optimal weight vector can be solved as
~ T~ ~T- 17T
0 i Yie: Y&
k= [kls k?]T = [Q - s :l (31)
17027 1521
where
152 7351)‘1
a=[1- 122202 . (32)
(17212 115211
Note that §7§2 = ||§1]||[72]| cos @, where 8 denotes the angle between these two vectors, we can
rewrite a as
a=(1-cos?f)"! = csc?é. (33)

10

From Fig.1, we have

“éaz)pror”2 = ”y“2 - ”yapproz”2
= ”y“2 - yTYapprox (34)
= |lyll® = kallFall® = kally2lf.

Substituting (31) into (34) yields

”éapproa:”2 = ”)’“2 — csc? a(yg‘é?, + S’gél)
= IylI? = csc? 6[5T(y — 72) + 53 (v — 91)] (35)
= [lyli* — csc? 8|31 — ¥2!*.
Thus, the bias of SP-RLS II is given by

[Aesl? = [€appror|® — [I€]17
= llyll?> — ese? 8lly1 — 321> = (llylI* - |
= [[911* = csc? 6|31 — ¥

1% (36)

For any given 4, it can be shown that (see Appendix) ||Ae;||? is bounded by
|Aes|* < [|Aer . (37)

This implies that the performance of SP-RLS II is better than that of SP-RLS I in terms of

estimation error.

4.3 Bandwidth, Eigenvalue Spread, and Bias

From (24) and (36) we know that the orthogonality between the two subspaces span{A;} and
span{A,} will significantly affect the bias value; i.e., signals with different degrees of orthogonality
will have different bias values for the Split RLS algorithm. However, in practice, the evaluation
of degree of orthogonality for multidimensional spaces is nontrivial and computationally intensive
(e.g., CS-decomposition {10, pp. 75-78]). Without loss of generality, we will only focus our discus-
sion on single-channel case, where the data matrix A consists of only shifted data and the degree of
orthogonality can be easily measured. In such a case, the degree of orthogonality can be measured
through two indices: the bandwidth and the eigenvalue spread of the data. If the signal is less cor-
related (orthogonal), the autocorrelation function has smaller duration and thus larger bandwidth.
Noise processes are examples. On the other hand, narrow-band processes such as sinusoidal signals
are highly correlated. If the data matrix is completely orthogonal, all the eigenvalues are the same
and the condition number is one. This implies that if the data matrix is more orthogonal, it will

have less eigenvalue spread. It is clear from our previous discussion that the SP-RLS will render

11

less bias for the broad-band signals than for the narrow-band signals.

As to the TSP-RLS, note that the output optimal projection is a linear combination of the
input column vectors. If the inputs to one stage of the TSP-RLS array are less correlated, the
outputs of this stage will still be less correlated. As an example, suppose now the inputs of the

TSP-RLS 1II array are completely orthogonal, we have
Vo = Wo;-qai-1 + Woay, for i=1,2,...,N/2 (38)

where wWy;_1 and w,, are the optimal weight coefficients in each subarray. It can be easily seen that

yTy, = 0, for i # j. The orthogonality of the original inputs is still preserved at the next stage.
1 V) g g g

Therefore, the signal property at the first stage such as bandwidth plays an important role in the

overall performance of the TSP-RLS.

4.4 Simulation Results

In the following simulations, we will use the autoregressive (AR) process of order p (AR(p)) to

generate the simulation data

u(n) = ‘Z:wi u(n — 1) + v(n) (39)
1=1

where v(n) is a zero-mean white Gaussian noise with power equal to 0.1. Besides, the pole locations
of the AR processes are used to control the bandwidth property: As the poles are approaching the
unit circle, we will have narrow-band signals; otherwise, we will obtain broad-band signals. All the
simulation results are based on the average of 100 independent trials,

In the first experiment, we try to perform fourth-order linear prediction (LP) with the AR(4)
processes using the SP-RLS and TSP-RLS systolic arrays described in Section 3. In this case, the
SP-RLS II is equivalent to the TSP-RLS II because they have identical implementations. Table 2
shows the AR(4) models used in this experiment. In model I and II, the two poles are at the same
radii varied from 0.5 to 0.95. In model III and IV, one pole is fixed and the other is variable. For
each model, the LP problem is repeated for ten times by varying the poles location from 0.5 to 0.95
with 0.05 increment. The simulation results are shown in Fig.5, in which the z-axis represents the
location of the variable poles in model I-IV, and y-axis represents the average output noise power
after convergence. Ideally the output should be the noise process v(n) with power equal to 0.1. As
we can see, when the bandwidth of input signal becomes wider, the bias is reduced. This agrees
perfectly with what we expected.

Beside the bias values, we also plot the square root of the spectral dynamic range D (the ratio
of the maximum to the minimum amplitude on the AR power spectrum) associated with each AR

model. It is known that the eigenvalue spread of the data signal is bounded by the spectral dynamic

12

range [11]

ne

w2
1<)‘max < ma'x{,U(e)I } D, (40)
/\min

- ~ min{|U(e)[?}
where U(e’*) is the spectrum of u(n). From the simulation results, we see the consistency between
the bias value and the spectral dynamic range. This indicates that the performance of the Split
RLS algorithms is also affected by the eigenvalue spread of the input signal. This phenomenon is

similar to what we have seen in the LMS-type algorithms.

In the second experiment, we extend the previous experiment to perform eighth-order LP for
four AR(8) processes. The setting for the poles is listed in Table 3. The simulation results, shown
in Fig.6, again validate the bandwidth-bias relationship. Beside the bias effect, two observations

can be made from these two experimental results:

1. The SP-RLS performs better than the TSP-RLS. This is pretty much due to the number of

approximation stages in each algorithm.

2. The overall performance of SP-RLS II is better than that of SP-RLS I. This agrees with our

analysis in (37).

Next we want to examine the convergence rate of our algorithm. An AR(7) model is used to
generate data and the sum of the current inputs is used as the desired signal. The output should
be zero after it converges. Fig.7 shows the convergence curve for the 8-input FULL-RLS and the
TSP-RLS II after some initial perturbation. It is interesting to note that although the TSP-RLS II
has some bias after it converges, its convergence rate is faster than that of the FULL-RLS. This is
due to the fact that the O(log, V) system latency of the TSP-RLS is less than the O(N) latency of
the FULL-RLS. Also, to initialize an 8-input full-size array takes more time than to initialize the
three small cascaded 2-input arrays. The property of faster convergence rate is especially preferred
for the tracking of parameters in non-stationary environments. In Section 6 we will provide an

image restoration simulation to verify this observation.

5 Projection Method with Orthogonal Preprocessing

In the previous sections, we have seen that the Split RLS performs very well when the input signal
is less correlated (or broad-band). However, in many applications, processing of highly-correlated
(or narrow-band) signals is inevitable. We are thus motivated to investigate a way to improve the
Split RLS algorithm when dealing with highly-correlated signals. From the analyses in Section
4, we know that the estimated optimal projection will approach to the real optimal projection
when all subspaces are more orthogonal to each other. Therefore, if we can preprocess the data

matrix such that the column spaces become more orthogonal (less correlated) to each other. a

13

better performance is expected. Such a concept has been employed in the “Transform domain LMS
algorithm” (TDLMS) [12][13][14], as well as in the row-partitioning projection methods [3][4]. It
is clear that Gram-Schmidt orthogonalization will render an excellent performance. However, the

O(N?) complexity prevents us from considering it.

5.1 Transform-Domain LS Problem

In transform-domain signal processing, the input data matrix A is first transformed into another
data matrix Z

Z = AT (41)

where T is an unitary transformation matrix of rank N. The transform-domain LS problem is to
find the optimal weight vector k = [k1, kg, -+, kn]T which minimizes the LS error ||Zk — y||? in
the transform domain. Because Z and A span the same signal space, the LS error will be the same
as in (2). The transformation process can be viewed as a set of filter banks with equally spaced
mainlobes [14]. Each column vector of Z corresponds to the output signal of a given filter in the
filter banks. Therefore, the column vectors of Z will be less correlated than those of A. This helps
us to obtain a better ¥,pprr according to our observations in (24) and (36).

The operation for the Split RLS with orthogonal preprocessing is as follows: First perform the
orthogonal transform on the current data vector, then use the transformed data as the inputs of
the Split RLS. In our approach, the Discrete Cosine Transform (DCT) and the Discrete Hartley
Transform (DHT) are used as the preprocessing kernels. As to the hardware implementation, we
can employ the time-recursive DCT/DHT lattice structure in [15] to continuously generate the
transformed data. Fig.8 shows the SP-RLS I array with DCT/DHT preprocessing. The transform-
domain data are first generated through the DCT/DHT lattice structure, then are sent to the
SP-RLS I array to perform the RLS filtering. The TSP-RLS array with the preprocessing scheme
can be constructed in a similar way. Since both the DCT/DHT lattice structure and the TSP-RLS
array require O(N) hardware complexity, the total cost for the whole system is still O(N).

In addition to the two aforementioned transforms, for the purpose of further decorrelation, we
also propose a new preprocessing scheme called the Swapped DCT (SWAP-DCT) based on the
DCT. Suppose Z = [21,22,...,2N] is the DCT-domain data. In the DCT preprocessing given in
Fig.8, the input data is partitioned as

A, = [21722""’ZN/2]’ (42)

Ay = [ZN/2+1a ZNj2425 - ZN)

14

To make the input data more uncorrelated, we permute the transformed data column as

Ay =[21,23,...,22k—1, -, ZN-1}, (43)

Ao = (22,24, .., 22k, ..+ ZN]
in the SWAP-DCT preprocessing scheme. Fig.9 shows the spectrum of the normal DCT partitioning
and the SWAP-DCT partitioning. Recall that the eigenvalue spread will affect the bias value, and
the eigenvalue spread is bounded by the spectral dynamic range. It is obvious that the SWAP-DCT
preprocessing scheme will have better performance due to the smaller eigenvalue spread in both
A4 and A,.

5.2 Simulation of the TSP-RLS with Orthogonal Preprocessing

To validate our arguments for the orthogonal preprocessing, we will repeat the two experiments in
Section 4.4 for the TSP-RLS II with three different preprocessing schemes (DCT, DHT, SWAP-
DCT). The simulation results are given in Fig.10 and Fig.11. In general, the TSP-RLS with DCT
preprocessing gives a fairly significant improvement in the bias value over the TSP-RLS without
any preprocessing (Normal TSP-RLS). Nevertheless, some exceptions can be found in AR(4).III
and AR(8).III. As to the DHT, it does not perform well in most cases except in AR(8).Il and
AR(8).IV. It is as expected that the SWAP-DCT performs better than the DCT in most cases.
This supports our assertion for the effect of the SWAP-DCT.

From the simulation results, we can see that it is almost impossible to find one transform that
is optimal for all signals. This is also true for the TDLMS algorithms [13]. In general, the DCT
and the SWAP-DCT are good choices to improve the performance.

6 Application to Multidimensional Adaptive Filtering

In this section, we will apply the Split RLS to the multidimensional adaptive filtering (MDAF)
based on the architecture in [8]. In [8], the McClellan Transformation (MT) [16] was employed to
reduce the total parameters in the 2-D filter design, and the QRD-RLS array in [17] was used as
the processing kernel to update the weight coefficients. In our approach, we replace the QRD-RLS
array with the Split RLS array. This will result in a more cost-effective MDAF architecture while

with even better performance.

15

6.1 2-D Adaptive Filtering using McClellan Transformation

Given a 1-D zero-phase FIR filter with support —N < i < N, the frequency response can be written
as
N N
H(w)= Z h; cos(iw) = Z h,T;[cosw]. (44)
i=0 i=0
where T;[-] denotes the Chebyshev polynomial of degree ¢. Using the transformation of variables
[16]

F(wy,wy) — cosw, (45)

we obtain the MT 2-D frequency response

N
H(wy,wy) = Y hTi[F(wr,w2)). (46)

=0
The MT is a near-optimal design method for 2-D filters [18, chap.4]. It decomposes the design
problem into the design of the I-D prototype FIR filter, h;, 1 = 0,1,---, N, and the 2-D transfor-
mation function, F(wy,ws). The former defines the frequency response along the 2-D frequency
plane, while the latter, which is usually a small fixed 2-D zero-phase FIR filter, maps the 1-D fre-
quencies into contours in the 2-D frequency plane. Fig.12 shows the block diagram which performs
2-D filtering based on the MT and the Chebyshev recursion [19][8]. Each PE is a linear systolic
array realizing the 2-D transformation function in (45) with z;(n1,n2),7 = 0.1,--+, N, as the PE
output. y(ny,ne) is the desired 2-D signal, and h = [hy, hy, - - -, hn]T is the tap coefficient vector of
the 1-D prototype filter. In [8], h is updated by considering Fig.12 as a multichannel LS problem,

i.e., h is obtained by minimizing the LS error

]\Y
lle(ny, n2)||? = lly(ny, n2) — d(n1,)1 = lly(na, m2) = Y hozo(n1.na)| (47)
1=0

for each incoming data. For the systolic implementation, h is solved through the QRD-RLS array
in [17] with z,(ny,n2)’s and y(n1,nz) as the array inputs. However, the opposite data wavefront
in the QRD-RLS array as well as the O(N?) hardware complexity makes the system inappropriate
for cost-effective pipelined processing.

In some applications, such as image restoration and image registration, the estimation error
e(n1,n2) is the only parameter of interest. In such a case, we can modify the MDAF structure
in [8] by replacing the QRD-RLS array with the FULL-RLS array since the latter produces the
LS error in a fully-pipelined way. To further reduce the hardware complexity, we can employ the
TSP-RLS array as the processing kernel. As a result, we can perform 2-D adaptive filtering with
O(N) hardware complexity and with unit throughput rate.

16

6.2 Simulation with TDALE

The performance of the proposed MDAF architecture is examined by applying it to a two-dimensional
adaptive line enhancer (TDALE) [20][21] for image restoration. The block diagram is depicted in

Fig.13. The primary input is the well-known "LENA” image degraded by a white Gaussian noise.

A 2-D unit delay z; 122_ ! is used as a decorrelation operator to obtain the reference image. The

image signal is fed into the system in the raster scanned format - from left to right, top to bot-

tom. After the input image goes through the TSP-RLS array, the generated estimation error is

subtracted from the reference signal to get the filtered image. For comparison, we also repeat this

experiment using the FULL-RLS array.

The simulation results are shown in Table 4 and in Fig.14. We can see that the performance of
the TSP-RLS is better than the 2-D joint process lattice structure in [21] when the signal-to-noise
ratio (SNR) is low. It is also interesting to note that the TSP-RLS outperforms the FULL-RLS.
As we discussed in Section 4.4, although the TSP-RLS has misadjustment after convergence, it
converges faster than the FULL-RLS. This fast-tracking property is preferable under non-stationary

environments where convergence is very unlikely.

7 Conclusions

In this paper, we introduced a new O(N) fast algorithm and architecture for the RLS estimation
of nonstructured data. Compared with the conventional RLS, this new approach is sub-optimal
in the sense that it introduces extra bias to the LS estimations. Nevertheless, we have shown
that the bandwidth and/or the eigenvalue spread of the input signal can be used as a good per-
formance index for these algorithms. Therefore, the users will have small bias when dealing with
broad-band/less-correlated signals. For narrow-band signals, we can also employ the orthogonal
preprocessing to improve its performance. The low complexity as well as the fast convergence
rate of the proposed algorithm makes it suitable for RLS estimation under the non-stationary or
fast-changing environments where the data matrix has no structure. For example, one possible
application of the Split RLS is in the Sidelobe Cancellor (SLC), in which the inputs of the auxiliary
arrays are mainly noises. The fast tracking capability of the Split RLS algorithm, as demonstrated
in the image restoration simulations, provides a very promising potential for parameter tracking
under non-stationary environments. Furthermore, the systolic architecture of the Split RLS is fully
parallel and pipelined and thus provides a high-throughput implementation for real-time applica-

tions.

17

Appendix

In this appendix, we will show that the bias of SP-RLS II is bounded by that of SP-RLS I. From
(24) and (36), we have
|Aeil* = Iy — 31 - F2l1%

) L (48)
[Aez]|* = [|F]1* — csc? 6]|51 — F2%.
Note that csc?6 > 1 for any 4. Thus,
|Aei]? — lAeal> > Iy — 31— F2ll> = 9N + |71 — ¥/
= 251l + 15201%) — 57 (51 + F2))- (49)
From (20) and (21), we have
191012 = I71)1% + 29752 + 32 (P1y2), (50)
19217 = [192I1° + 25732 + 37 (P231) (51)
where the fact that 77 (P132) = ¥1(Poy1) = §1¥2 is used. Combining (50) and (51) yields
19211 + 13201® = [I911* + 297 §2 + 93 (P132) + 71 (P1). (52)

On the other hand,

VTG +52) = 37131 + Puga) + (32 + Poy)] = 19117 + 57 (P132) + 37 (Payy). (53)

Substituting (52) and (53) into (49), we have

|Aei |2 =||Aes]? > 2125752 - 5T (P152) -1 (Poy1)] = 2 (3T (F2— P1§2) + 91 (31— Pay)]. (54)

Because Py and P, are projection matrices, it is clear that yo > P1y2, ¥1 > Poyi. Therefore.
| Aei|* - [|Aeg||* > 0, ie., [[Aey]]? < [|Aeyl?. O

References

[1] M. L. Honig and D. G. Messerschmitt, Adaptive Filters : Structures, Algorithms, and Appli-
cations. Kluwer Academic Publishers, 1984.

[2] S. Haykin, Adaptive Filter Theory. Prentice-Hall, Englewood Cliffs, N.J., 2nd ed., 1991.

[3] A. S. Kydes and R. P. Tewarson, “An iterative methods for solving partitioned linear equa-
tions,” Computing, vol. 15, pp. 357-363, Jan. 1975.

18

(4] T. Elfving, “Block-iterative methods for consistent and inconsistent linear equations,” Numer.
Math., vol. 35, pp. 1-12, 1980.

(5] R. Bramley and A. Samem, “Row projection methods for large nonsymmetric linear systems,”
SIAM J. Sci. Stat. Comput., vol. 13, pp. 168-193, Jan. 1992.

[6] K. Tanabe, “Projection method for solving a singular system of linear equations and its ap-
plications,” Numer. Math., vol. 17, pp. 203-214, 1971.

(7] J. G. McWhirter, “Recursive least-squares minimization using a systolic array.,” Proc. SPIE,
Real-Time Signal Processing VI, vol. 431, pp. 105-112, 1983.

(8] J. M. Shapiro and D. H. Staelin, “Algorithms and systolic architecture for multidimensional
adaptive filtering via McClellan transformation,” IEEF Trans. Circuits Syst. Video Technol.,
vol. 2, pp. 60-71, Mar 1992.

(9] G. W. Stewart, Introduction to Matriz Computations. Academic Press, New York, 1973.

(10] G. H. Golub and C. F. Van Loan, Matriz Computations. The John Hopkins University Press,
Baltimore, MD, 2nd ed., 1989.

[11] J. Makhoul, “Linear Prediction: A tutorial review,” Proc. IEEFE, vol. 63, pp. 561-580, April
1975.

[12] S. S. Narayan, A. M. Peterson, and M. J. Narasimha, “Transform domain LMS algorithm,”
IEEE Trans. Acoust., Speech, Signal Processing, vol. 31, pp. 609-615, June 1983.

(13] D. F. Marshall, W. K. Jenkins, and J. J. Murphy, “The use of orthogonal transforms for

improving performance of adaptive filters,” IEEE Trans. Circuits Syst., vol. 36, pp. 474-484.
April 1989.

[14] B. Farhang-Boroujeny and S. Gazor, “Selection of orthonormal transforms for improving the
performance of the transform domain normalised LMS algorithm,” IEE Proceedings-F. vol. 139.
pp. 327-335, Oct. 1992.

[15] K. J. R. Liu and C. T. Chiu, “Unified parallel lattice structures for time-recursive Discrete Co-
sine/Sine/Hartley transforms,” IEEE Trans. Signal Processing, vol. 41, pp. 1357-1377, March
1993.

[16] R. M. Mersereau, W. F. G. Mecklenbrauker, and T. F. Quatieri. Jr., “McClellan transforma-
tions for two-dimensional digital filtering: I - Design,” IEEE Trans. Circuits Syst., vol. 23,
pp. 405-422, July 1976.

[17] W. M. Gentleman and H. T. Kung, “Matrix triangularization by systolic arrays,” Proc. SPIE,
Real-Time Signal Processing IV, vol. 298, pp. 298-303, 1981.

[18] J. S. Lim, Two-dimensional signal and image processing. Englewood Cliffs, New Jersey:
Prentice-Hall, 1990.

[19] J. H. McClellan and D. S. K. Chan, “A 2-D FIR filter structure derived form the Chebyshev
recursion,” IEFE Trans. Circuits Syst., vol. 24, pp. 372-378, July 1977.

[20] M. M. Hadhoud and D. W. Thomas, “The two-dimensional adaptive LMS (TDLMS) algo-
rithm,” IFEFE Trans. Circuits Syst., vol. 5, pp. 485-494, May 1988.

[21] H. Youlal, Malika Janati-I, and M. Najim, “Two-dimensional joint process lattice for adaptive
restoration of images,” IFEE Trans. Image Processing, vol. 1, pp. 366-378, July 1992.

19

No. of No. of System
Angle Computers Rotators latency
FULL-RLS N N(N+1)/2 N+1
SP-RLS I N+1 N[44+ Nj2+1 N/2+3
SP-RLS II N +2 N?/4+ NJ2 +3 N/2+4
TSP-RLS I 2N -1 2N -1 2(log, N +1)
TSP-RLS I1 2(N-1) 3(N - 1) 3log, N
QRD-LSL 2N +1 3N +1 N+1

Table 1: Comparison of hardware cost for the FULL-RLS, SP-RLS, TSP-RLS, and QRD-LSL,
where the QRD-LSL requires shift data structure.

AR(4) P1 P2 &1 ®2
I 0.5-0.95 1 1/87 | 4/87
I 05-095| p1 |5/87 | 7/8%
111 0.5-0.95 0.6 1/87 | 4/87
v 0.6 0.5-0.95|5/8r | 7/87

Table 2: List of the AR(4) models used in Experiment 1 (with poles at p;e*??! and pyet/¢2?),

AR(8) P1 P2 P3| pa | $2 #3 P4
T || 05-005] pi. | pi | pi | 1/157 | 4/157 | 8167 | 12/157
I 0.5-0.95 P1 pi | p1 | 2/15% | 5/157 | 8/15% | 11/15x
T]| 05-005] 06 | pi |06 1/157 | /167 | 8/167 | 12/157
v 06 | 05-095]06| ps | 2/157 | 5/157 | 8/157 | 11/157

Table 3: List of the AR(8) models used in Experiment 2 (with poles at p;eti®l p,e®192 pieti®3
+y¢4
p4€).

Input SNR (dB) 10.0 3.0 0.0
Output SNR in [2]] 12.0 8.0 6.0
Output SNR using FULL-RLS 10.5 9.0 7.6
Output SNR using TSP-RLS II 10.9 9.8 8.7

Table 4: SNR results of the TDALE in the application of restoring noisy image.

20

» span{A;}

span{Ai}

Figure 1: Geometric interpretation of the projection method.

21

A y

€approx

(a) (b)

A, Y Ay, Y aja; Y azas Y asagyY azag Y

OED

y y y

yi Y2 ly le
l | (o) RL@
Ay 7] ;
Goa A
RLS() @
| 1
€approz éapprox
(c) (d)

Figure 2: Block diagram for (a) a N-input RLS algorithm, (b) the SP-RLS I algorithm, (c) the
SP-RLS 1II algorithm, (d) the TSP-RLS II algorithm.

22

as3
a3z
asi ass
as2
az a3
a12
a

1

N

1

ﬁ

vy

Angle Computers Rotators | Rotators II Modified Multiplier
Tin in in Yin Tin Yin
Yin l l y
c c— — C C — \J)
PE s g — r [— S s — r //(/
Yout l 1 l i
Zout Zout Yout Tout Yout
If Ty = 0 then
c—1; 8 —0;
PE otherwise Tout — CTyp — ST | Tout — CTyn — ST | Loyt — Yun — YTin
Operation = /T + Ifn T — STup +CT T +— ST;p + CT Yout — Yin

c—rlr'y s —xzynfr

re—r'
end

Yout < CYan

Yout — Yun

Figure 3: Modified QRD-RLS array (Projection array) and its PE operations.

23

N/2-input
Projection
Array

1-input
Residual
Array

~
~
O . Angle Computer h
D : Rotator

@ : Modificd Multipher

d o o . - = -

. * Muluplier in |7} e

N/2-input
Projection
Array

y y
\ y
N 1
> I 2-iput
1 Residual
' Armray
O ! Angle Computer 1
[:I . Rotator :
) '
@ : Modified Mulupher , (S
N
. . Muluplier in [7] é

(b) (c)

Figure 4: Systolic implementation of (a) the SP-RLS I, (b) the SP-RLS II, (c) the TSP-RLS II.

24

SuUoEO07 Bl0d suoneoso 9lod
00’1 060 080 0.0 090 om.w 00 00'L 06'0 080 00 09°0 om.w 00
o b b 5 «
i B .mzt\\dnl\MU == wgo - 020
o e
T \Aw\\@\\o\\\é\\ 00 - 0v'0
- 1 090 - 09°0
- 4 080 . 080
. oot o L 00}
001 060 080 0L0 090 080 =
- T T W 402t 8 - 021
L o005 -
- {1ort 2 L or'1
L H o000 Q W
- g Joow 1091 8 S 09t
o
b ol - 0002 - " Q - g - o002 - "
, ar—* 1™ 08'L g ap—* 08l
- 100e ~ - 1 002
1 1 1 1 000€ 1 1 1 1 0 00E
H 4 02¢e - 1 oz2
r (Il S19-dS1=) 11 S1H-dS V—V 1 0ve 3 (I S74-dS1=) 1 S1Y-dSV—V 10¥e
- | WJIu&m.PI 4 09¢ L | wJI.Qw._.I 4 09¢
1 1S7d-dS 5—86) 1 SH-dS B—&)
S 1IN4G—O 1 08¢ r STH-TIN4G—© 108%¢
1 1 1 1 oo.m e i 1. 1 oo.m
AI'(P)dv 1" (y)uy
suoyed0] 8lod suoned0 8jod
00'L 060 080 00 09'0 0S0 00’4 06'0 080 0270 090 050
' . " . 000 : ’ . : 000
- - oL
- L 4020
O
L =4 L 4 0€0
pe)
=4
z
L m. L 1 00
[«]
o
2 .
- 5 - 1050
- - 4090
(1 S14-dS1=) 11 SWH-dS VvV—V (114-dS1=) 1 S1Y-dS +—%
I I S1d-dS1 o—o 1oz L I S1H-dSLO—% o0
) STH-dS F—+) | SIH-dS G—t3
I SIH-TINA6—O SH-TINIG—O
1 1 1 1 ow‘o 1 1 1 1 om-o

- (p)gv I'()av

J8MOd 8SsIoN indinO

25

18M0d 8SIoN Indino
Figure 5: Simulation results of AR(4).1, II, III, IV, where the square root of the spectral dynamic

range (D) is also plotted for comparison.

00't

SUONEDOT 9)0d
0 080 0L

6 L
T T T
G < © © O S © © <

Il SH-dS1D—P
I STH-dSV—F
1 SIH-dSLO—0
| STH-dS G—F
SIH-TINAC—O

L L L i

00°L

AlI'(8)HY

SuoNEo0 310d
060 080 0.0 090

0s

Il S14-dSLO—P
I SH-dS ¥V
1 STH-dSLO—©
1 SW-dS 3-8
SIHTINAGC—O

1 1 1 1

n(g)dv

810

00

0

000

090

040

080

1amod asioN indino

1aMod 8sioN Indino

SU01JBI0T 8]0d

00 } 060 080 0L0 090 050
_ _ _ _ 000
L 4500
i 010
| 510
L 20
s z0
i’ 1 L 1 0004
- Il STH-dSLD>—5 10€0
I STH-dS PV
] | SIH-dSL OO 1 ee0
| SH-dS 3—E
SHTINIG—O
1 1 1 1 ov.o
I(8)dv
SuoNEes07 3j0d
00} 06'0 080 0L0 090 050
T T T T oo.o
i S0'0
L # oo
| 510
i 020
i f low 4520
I —x 1 qogo
- Q\ Jooe
L) L 1 i 000 4 6£0
Il ST4-dSLD>—> .
r Il STH-dS ¥V 1 0v0
| STH-dSL OO
L | SW-dS 61 i sv0
SH-TINAG—O
1 i 1 1 om.o

I'(8)4v

1amod 8sIoN Indinp

19MOod 8stoN IndinQ

Figure 6: Simulation results of AR(8).I, II, ITI, IV, where the square root of the spectral dynamic

range (D) is also plotted for comparison.

26

0015 ; . . . ‘

0.013 T .

]

—— FULL-ALS r

TSP-RLS I |

0.010 | 1

: j

£ ' ;

T ooo7 | |

=3 ¥ |
= i

s W

ooos | Fi ;

.)

N |

0003 | .. {

iy, 1\

0.000 " - h et L T e v g)

25.0 75.0 125.0 1750 225.0 275.0

Time lteration

Figure 7: Learning curve of the FULL-RLS and TSP-RLS II after some initial perturbation.

N/2-input
Projection
Array

1-input
Residual

Array
. Angle Computer

* Rotator

. Modified Multipher
! Muluphierin [7} é

oo 1O

Figure 8: SP-RLS I array with orthogonal preprocessing.

(a) (b)

Figure 9: Spectrum of (a) the Normal DCT domain and (b) the SWAP-DCT domain.
27

00t

SUOIE0T B10d

080 040 090

~dVMS UM
1HQ WM F—V
100 UIM —©
11 STH-dS1 |BULON (3—]
S1H-TINd6—O

00’1

AI'(P)av

SUOIEDOT B|0d

080 0L0 090

mo

10Q-dVMS UM 2>
1HQ YM ¢—V
100 WM ¢ -0
I STY-dS1 [eWION 3—~&
STHTINAO—O

I (y)dv

0S 0

000

SO0

520

0E0

SE'0

ov'o

0S 0

SO0

400

610

g0

€20

4y

SUOIE0T 910d
060 080 0L0 090

18M0d 8SioN IndinO

....... R
P -

1O0G-dVMS YiIM = &>
1HA WM V—V

100 YIM &—©

11 STH-dS1 |BWION [3——t}
S TIN4d6—O

- S | B

I(F)dv

SUOIEOOT Bj0d
060 080 0.0 090

19M0d 8sioN IndinQ

/ 100-dVMS UM
1HQ UM F—
100 WM S~ ©
Il STH-dSL [BULON B—F)
STHTIN4 6—O

I'(y)dv

050

000

0c'0

or'o

090

080

oc't

or't

SO

0c0

e

0eo0

SE'0

oro

Jamod asioN IndinQ

1amod asioN Indino

Figure 10: Simulation result of AR(4).1, II, III, IV with preprocessing schemes.

28

SuoIEd0T 8|0d suonesnT ajod

00'} 060 080 0L0 090 050 00’1 060 080 0L0 090 050
] L 1 100
Fay FanY). — — O) £
- L G © - A4 r\ A /M urm\ o e S 60°0
o) T s -
t c .
g L {10
Z
f :
@ L 1 Ero
g |
P / LOG-dVMS WM © 1€ 3 &] 10Q-dVMS Uimi> - > .
/ 1HQ WM —% i \ 1HQ UM %7 1640
| / 190 WM —=o o / 190 Yim o—
/ Il STH-dSL IBULON 3—) 1 il ST-dSL [EWION G—E) I
4 STH-TINAG—O I STH-TIN46—O '
- 1610 /
L \ {610
1 i1 1 mF.o = 1 1 L 1
Al (8)av I(8)dv
suoneoo sjod Suoie207 Bj0d
00'1 060 080 0L0 090 050 00t 060 080 0L0 090 050
‘ _ : _ 500 _ _ . d 000
i {200 i 1500
L C 600
: 010
-)
o sko
r €10 m..
g
3 S0 2 s 020
(0]
°
L Lo g 1 ez
10Q-dyms ummzs o 3 I 100-dVMS WMo > §¢0
ﬁ 1HQ YiM —% lsro 1HQ YIM —7
Loawmme - ¢] L0a WMo © | oc0
I Il STH-dSL PWION B—8 . Il STH-dSL [eULON B—E1
$I-1NA6—o 1t¢0 SH-TIN46—O
. mm "
- g £2°0 g €0
T 1 I 1 n — G20) ') L oy o

n-(s)dy , I'(8)dv

Jamod 8sIoN Indinp

29

1emod osioN Inding
Figure 11: Simulation result of AR(8).1, II, III, IV with preprocessing schemes.

Primary
rmeEe T E E z, IZ-]
172

image :
TSP-RLS
Array
e(nl,nz)
-
y(n,n) - é(n,n) e ==
Figure 12: Block diagram of the McClellan Transformation. Figure 13: Block diagram of the TDALE.

Figure 14: (a) Original LENA image. (b) Noisy input image with SNR=3.7 dB (noise
variance = 1000). (c) Output of TDALE with full-size QRD-RLS array (SNR=9.2 dB).
(d) Output of TDALE with TSP-RLS array (SNR=10.0 dB).

30

